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The ef fec t ive  diffusion coef f ic ien ts  fo r  suspended  p a r t i c l e s  caused  by the i r  pseudoturbu len t  
pu l sa t ions ,  a r e  t r ea ted .  Der iva t ives  of the dynamic  va r i ab l e s  which de t e rmine  the a v e r a g e  
mot ion of the loca l ly  homogeneous  suspens ion  a r e  neglec ted .  

By defini t ion [1] the t e n s o r  of p a r t i c l e  diffusion coef f ic ien t s ,  f o r  the case  in which the diffusion is 
b rought  about by the r a n d o m  mot ion  of p a r t i c l e s ,  can be r e p r e s e n t e d  in the f o r m  

oo  

D~j = ~ -  (Rwl ' wj ('r) + Rwi ' wl (T)) d~; (1) 

where  the in tegrand  c o n s i s t s  of components  of the t e n s o r  of L a g r a n g i a n  c o r r e l a t i o n  funct ions fo r  the p a r -  
t ic le  ve loc i ty  w'. T h e s e  quanti t ies  can be wr i t t en  in the f o r m  

H,~i, wJ (z') = I e~'~: ~F~r wJ'(c~ k) do)dk. (2) 

H e r e  the in tegra t ion  is c a r r i e d  out over  all f r equenc ie s  w and all  w a v e - s p a c e  k, while ,I, w i ,w j (w ,k  ) is 
the spec t r a l  t e n s o r  of the r a n d o m  v e c t o r  w ' ,  in t roduced  in [2]. This  t e n s o r  is defined in [2] in such a way 
that  i ts in tegra l  with r e s p e c t  to w a v e - s p a c e  is the o r d i n a r y  L a g r a n g i a n  s p e c t r a l  t e n s o r  of pa r t i c l e  v e l o c -  
ity. 

It can e a s i l y  be seen f r o m  [2] that the t e n s o r  ,I, wi,wj(W , k ) , cons ide red  as  a funct ion of w, sa t i s f i e s  all 
the condi t ions  n e c e s s a r y  fo r  changing the o r d e r  of in tegra t ion  with r e s p e c t  to -r and w in (1) and (2). Chang-  
ing the o r d e r  of in tegra t ion  and us ing  the F o u r i e r  in tegra l  expansion for  the 5-  function,  we obtain the fo l -  
lowing re la t ion  fo r  the pseudoturbulen t  pa r t i c l e  diffusion t e n s o r  f r o m  (1) and (2) : 

Dij T f  ( w~, wj (0, k) ~ ~Fwi, w, (0, k)) dk (3) 

The usual  means  [1] of e x p r e s s i n g  the quant i t ies  tI, wi,w j (co, k ) i s  in t e r m s  of a v e r a g e  p roduc t s  of c o r -  
r e spond ing  componen t s  of the spec t r a l  m e a s u r e  dZ w of the r a n d o m  p r o c e s s  w ' . ' E q u a t i o n s  fo r  dZw and 
s p e c t r a l  m e a s u r e s  of o ther  r a n d o m  quant i t ies  c h a r a c t e r i z i n g  pseudo tu rbu lance  in a suspens ion  a r e  ob-  
ta ined in [2]. It can eas i ly  be seen f r o m  (3) that  in the p r e sen t  pape r  we have only to cons ide r  these  e q u a -  
t ions fo r  z e r o  f r e q u e n c y  w and only fo r  a s t e a d y - s t a t e  flow without grad ien t ,  when the s c a l e s  of the a v e r a g e  
motion a r e  much  l onge r  than the sca le  of the pseudo tu rbu lance ,  i .e . ,  when we can neg lec t  de r iva t i ve s  of d y -  
namic  v a r i a b l e s  c h a r a c t e r i z i n g  suspens ion  flow in the continuous approx imat ion .  It was shown in [2] that 
this  l a t t e r  c o r r e s p o n d s  to the f a m i l i a r  Eu le r  app rox ima t ion  in the hydrodynamic  app rox ima t ion  of a s i n g l e -  
phase  fluid, F o r  w = 0 we have the fol lowing equat ions  f r o m  [2]: 
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u k  dZ~ = ( l  - o) ktZo 
z ( ~ K  + ~) dZ~ - -  ~ K d Z v  =: - -  ~ k d Z  v ~  

i z 
~9~clZw + ~ [i ( l -- p) uk + ~voSk 2] dZo - -  ~ k t Z v  - -  -~-voS (ktZv) k 

9vo c N [ , [ n \1/~] 9 i'Vo ~ 'h d~ 

(4) 

Here the same symbols are  adopted as in [2], but the average  sign () is omitted f rom the symbols 
for  dynamic var iables  to simplify the notation. In the derivation of (4) an expression was used for  the in- 
teract ion force between phases,  valid for  R ~ 1, where R = 2 au/v 0 is the Reynolds '  number.  This expres -  
sion charac te r i zes  the re la t ive  flow of the liquid phase around individual part icles.  

It is convenient to pass to dimensionless variables ,  introducing a charac te r i s t i c  velocity u, cha rac -  
ter is t ic  l eng tha ,and  consequently a cha rac te r i s t i c  time a / u .  In what follows, the t rea tment  is presented 
for dimensionless var iables ,  which are  the rat ios  of the corresponding variables to dimensional quantities 
constructed f rom the charac te r i s t i c  scales  selected.  Thus, for example, the dimensional velocities and dif- 
fusion coefficients are  divided by u and ua respectively,  the dimensional frequency and wave-vec tor  by u / a  

and l /a ,  etc. The only exception is the dimensional spectra l  measure  of p ressu re  perturbations in the flow 

dZp, which is divided by dt/~uaK. When quantities are  rendered dimensionless in this way, the fo rm of Eqs. 
(1)-(3) is retained, and instead of (4) we have 

, d l n K  uok zz (1 + a ) d Z ~  - -  dZo = - -  ik:tZp -p ~ uodZp 

p~dZw -i- [i (i -- p) raok + sk 2] dZo ---- - -  i k t Z v  - -  1/, S (k/Z.) k 

u 2 S  R 2 u a  

Uo : - ~ ,  s : y ~ ,  r : 9 K  9 K  vo ' a = ~ . 

(5)  

The pa rame te r  o~ in (5) charac te r i zes  the rat io of dissipative forces  ar is ing f rom the instantaneous 
accelera t ion of the associa ted  fluid mass due to instantaneous velocity changes of colliding part icles ,  to the 
viscous interaction forces  between phases [2]. An order-of-magnitude est imate was obtained in [2] for o~ on 
the basis  of a model in which there are  elast ic  collisions in a gas of par t ic les  having an isotropic Maxwell 
velocity distribution. In dimensionless fo rm this gives us 

t / 3  , \ 1/I \1 /4  
(6) 

The symbols of paper  [2] are  a lso  retained here. 

F r o m  physical considerat ions it is natural to expect that "collisional" dissipation in a dispers ive 
sy s t em is re la t ively small ,  i.e., a << 1, at least for sys tems in which the concentration is not very  close to 
the concentration of a granular  l ayer  in the c lose-packed state. This conclusion results  f rom the following 
considerat ions in par t icular .  

1. By its nature eollisional dissipation is proportional to the collision frequency in the suspension of 
and the size of velocity discontinuity for  colliding part icles ,  i.e., it is always small for raref ied suspen-  
s ions. 

2. The collisions of par t ic les  suspended in the fluid usually lead to quite smooth, ra ther  than abrupt, 
changes of par t ic le  velocity. This is associa ted with the considerable p res su re  increase  in the fluid layer  
between par t ic les  as they approach each other,  and the necess i ty  for "squeezing out" this layer  before 
there can be direct  contact of the part icles .  A s imi lar  effect also occurs  when a par t ic le  approaches a so l -  
id wail [3], and in lubrication p rocesses ,  when the part  of the fluid layer  is played by the lubricat ing fluid 
in the space between the journal and bear ing [4]. We can thus assume that the est imate (6) based on a model 
of purely elast ic  collisions between par t ic les ,  is higher by an order  of magnitude even for suspensions 
which are  not ve ry  concentrated.  

3. Finally we can expect a substantial effect f rom direct  part icle  collisions (contacts) predominantly 
in suspensions of coarse  and heavy par t ic les  in fluids of low density and viscosi ty,  par t icu lar ly  in gases. 
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However, such sys tems  are  usually locally inhomogeneous, the behavior  of neighboring par t ic les  is 
s t rongly correla ted,  and the number  of effective collisions should be considerably lower than in locally 
homogeneous dispers ive  sys tems ,  to which est imate (6) re fe rs .  This also leads to a considerable decrease  
in collisional dissipation. 

We note that for  small  6 and R the smal lness  of a is also conf i rmed by est imate (6). We refra in  f rom 
consider ing suspensions in states close to the c lose-packed state, when collisional dissipation can, gen- 
era l ly  speaking, be considerable,  and assume that a ~ 0. 

Solving Eqs. (5) for  a = 0, we have 

4 7~] ~:ok k~ dZwI~_ o ~ - ~ d l n K u o ~ - [ i ( l - p )  ruok-p i ~ s ~  ! ~ - ~ J Z p  
- l dp " '  ~ " (7) 

It is convenient to c a r r y  out the analysis  using the principal axes of the tensor  D as coordinates,  and 
so we let the coordinate axis xt lie along the vec tor  u'0.We then obtain the following expressions for  the di-  
agonal components of ~I,w,w(0,k) f rom (7): 

~I:wl wl (0 ,  k )  = V~d ]n K T I -~ 4/s sk ~ kls'~"  1~ "vo o (o ,  k )  

(8) 

The summation with respect  to j in (8) is not ca r r ied  out; the c ross -components  of the spectral  den- 
sity tensor  a re  not written down, since they give zero  when integrated over wave space in (3). The spectral  
density q,p,p(W,k) for perturbations of the concentration p' is defined in dimensionless  frequency space w 
and wave vector  space k; we use an expression for  it which follows f rom results  [2] 

~/'~,~(0, k) -(Dkk) l g  cO 0,~(k), ( I ) p , ~ ( k ) : h Y ( k 0 - - k )  

r = ' --- p-:) , Y ( x ) =  0 ,  x < 0 .  

(9) 

Of course  the express ion for  k 0 in (9) r e f e r s  to locally homogeneous suspensions only. For  locally 
inhomogeneous dispers ive sys tems k 0 must be t reated as some free pa ramete r ,  which coincides in order  
of magnitude with the rat io of the part icle  radius a to the mean radius of inhonaogeneities a r i s ing  in the 
flow [5]. 
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It is  c l e a r  f r o m  (3), (8) and  (9) that  the  p s e u d o t u r b u l e n t  d i f fus ion  of p a r t i c l e s  is  n o n i s o t r o p i c .  It is  
a x i s y m m e t r i e ,  and the  p r e f e r r e d  d i r e c t i o n  is the  d i r e c t i o n  of i n t e r p h a s e  s l i pp ing  u 0. On i n t e g r a t i n g  we o b -  
t a in  the  fo l lowing  equa t ions  fo r  the  e f f e c t i v e  d i m e n s i o n l e s s  c o e f f i c i e n t s  of p s e u d o t u r b u l e n t  p a r t i c l e  d i f fu -  
s ion  in the  l ong i tud ina l  and  t r a n s v e r s e  d i r e c t i o n s :  

+-- Y+ '++'~ :o . . ,  _+ p + r , +  + +0,) j+ +_ ++++ ++o "-+- + + j i -,++, -+- +o,,~ 

D+ ~ o  + r 1 / .  s + t6 s~ko4) ( ]m--  J<) -~- r~ 

1 

D~--O~ ~ ' "r.=jt~+T~" 

(lo) 

In v i ew of the  a p p r o x i m a t i o n s  m a d e  in d e r i v i n g  (4) and (5), e x p r e s s i o n s  (10) m a y  be  t aken  to  be  v a l i d  
f o r  R ~ 1, which  c o r r e s p o n d s  n o r m a l l y  to l o c a l l y  homogeneous  s u s p e n s i o n s .  In th i s  c a s e  it i s  p e r m i s s i b l e  
f i r s t l y  to u s e  the  e x p r e s s i o n  fo r  k 0 f r o m  (9), and  s e c o n d l y  to n e g l e c t  the t e r m  involv ing  r 2 in (10). It is  not 
d i f f i cu l t  to  s e e  tha t  n e g l e c t  of th i s  t e r m  is  e q u i v a l e n t  to n e g l e c t i n g  the  m o m e n t u m  of the  Liquid p h a s e ,  a s  is  
done,  fo r  e x a m p l e ,  in [5]. Thus th i s  a p p r o x i m a t i o n  t u r n s  out to  be va l id  fo r  f a i r l y  s m a l l  v a l u e s  of the  R e y -  
n o l d s '  n u m b e r  R, 

Equa t ions  ( i0) can e a s i l y  be  s e p a r a t e d .  In fact ,  f r o m  (10), we have  the  fo l lowing  t r a n s c e n d e n t a l  e q u a -  
t ion f o r  the quan t i ty  7 :  

2~ (l -F 8/9 sk0 ~ -F 16/45 s~k0 ~) (Is - -  14) 
1 ~ ' ~  n~Jo-F2n(I H-%s.ko~)Y~r'(l-FS/~sko~-l-'~6/+~s~koCt).J4 " (11) 

H e r e  the  func t ion  

d In K (12) n(p)=( t -p)  r 

has been  i n t r o d u c e d ,  and has a p a r t i c u l a r l y  s i m p l e  f o r m  for  a p p r o x i m a t i o n s  l i ke  K(p) ~ (1 - p) -n .  

N e g l e c t i n g  t e r m s  invo!Ying r 2, we have ,  fo r  e x a m p l e ,  the  fo l lowing  e x p r e s s i o n  fo r  the  long i tud ina l  
d i f fus ion  c o e f f i c i e n t  f r o m  (10)" 

( i i ) .  

D1 (i 4-'r~,)(n@)'~(t ~ 8 i6 ,'/~ " 
- ~T(~-~ ~sk~ s~k~ (]~-]4)'/~" (13) 

The  s y m b o l  T, which  a p p e a r s ,  in p a r t i c u l a r ,  in the i n t e g r a l s  Jn, iS t aken  to  m e a n  the s i n g l e  roo t  of Eq. 

A n a l y s i s  shows  that  the  quan t i ty  "y is  u s u a l l y  v e r y  s m a l l .  An a p p r o x i m a t e  e x p r e s s i o n  f o r  7 can then 
be  e a s i l y  ob ta ined  f r o m  (11). Th i s  p a r a m e t e r  c e a s e s  to be  s m a l l  only  fo r  c o n c e n t r a t i o n s  wh ich  a r e  v e r y  
c l o s e  to  the  c o n c e n t r a t i o n  of a c l o s e - p a c k e d  l a y e r  of p a r t i c l e s  p , ,  s i n c e  fo r  p ~ p ,  the  quan t i ty  s in (11) 
and (13) c e a s e s  to be  f in i te ,  and  k 0 f r o m  (9) t ends  to inf in i ty .  It can  be  a s s u m e d  tha t  fo r  such  va lue s  of p, 
the  t h e o r y  d e v e l o p e d  a b o v e  c e a s e s  to be  v a l i d  in g e n e r a l  s i n c e  c o l l i s i o n a l  d i s s i p a t i o n  was  ne g l e c t e d .  

N e g l e c t  of v i s c o u s  s t r e s s e s  in a d i s s i p a t i v e  m e d i u m  would  m e a n  s = 0 in e x p r e s s i o n s  (11)-(13). It can 
e a s i l y  be  s e e n  tha t  t h i s  a p p r o x i m a t i o n  is  qui te  j u s t i f i e d  f o r  s m a l l  and m o d e r a t e  v a l u e s  of p, but  c e a s e s  to  

be  v a l i d  fo r  p ~ p , .  

We m u s t  have the func t ions  K(p) and S(p) f o r  c o n c r e t e  c a l c u l a t i o n s .  The  funct ion  K(p) d e s c r i b e s  the  
i n c r e a s e  in e f f e c t i v e  h y d r a u l i c  r e s i s t a n c e  of a p a r t i c l e  b e c a u s e  of the r e s t r i c t i o n  of p a r t i c l e  flow in a f ixed  
n o z z l e ,  w h e r e  the  m o t i o n s  a r e  not  p s e u d o t u r b u l e n t .  The e f f ec t i ve  r e s i s t a n c e  of a l a y e r  of r a n d o m l y  mov ing  
p a r t i c l e s ,  a p s e u d o l i q u e f i e d  l a y e r ,  f o r  which  t h e r e  is  a g r e a t  dea l  of e x p e r i m e n t a l  m a t e r i a l  [6], can be  
qui te  d i f f e r e n t  f r o m  the  r e s i s t a n c e  in a m o t i o n l e s s  n o z z l e  of the  equ iva l en t  p o r o s i t y  [5, 6]. T h e r e  i s  much  
l e s s  e x p e r i m e n t a l  da t a  on the  quan t i ty  K(p) in a m o t i o n l e s s  l a y e r  and ,  what  is  m o s t  i m p o r t a n t ,  a l l  th i s  da ta  
was  ob ta ined  fo r  c o m p a r a t i v e l y  high v a l u e s  of p, a s  a ru l e  c l o s e  to p . .  One of the m o s t  w ide ly  u s e d  r u n e -  
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t ions  K(p) f o r  a l a y e r  of ha rd  p a r t i c l e s  was obta ined by Ergun  [7], who g e n e r a l i z e d  a l a r g e  amount  of the 

a v a i l a b l e  e x p e r i m e n t a l  data.  F o r  s m a l l  R e y n o l d s '  n u m b e r s  R we have  f r o m  [7] 

25 p 

K ( p )  ~ 3 ( i - - p )  a 

This  funct ion is va l id  only fo r  p > P0 ~ 0 .25-0 .30;  fo r  p --~ 0 it does not  g ive  the r e q u i r e d  l im i t  K(p) -~ 

1. In o r d e r  to obtain a r e l a t i o n  a p p r o x i m a t e l y  va l id  o v e r  the whole i n t e rva l  f r o m  0 to p , ,  we mus t  s u p p l e -  

ment  this  funct ion in the r e g i o n  p < P0 by the funct ion 

K (p) ~ (i -- 9) -~ 

choos ing  the cons tan t s  P0 and n so  that  K(p) and i ts  f i r s t  d e r i v a t i v e  a r e  cont inuous  at the point p = P0- This  

l eads  to the equa t ions  

n I n - i  

P 0 - - n _ _  1 , 

which  can be s o l v e d  to give n ~ 4.58, P0 ~ 0.28. 

In what  fo l lows we sha l l  u se  the a p p r o x i m a t i o n  

] ( i - -  p)-a.ss, p < 0.28 
K (P) / 

i2'5/8 O (1 - -  p)-~, p > 0 .28  . 
(14) 

This  funct ion  is shown in Fig.  1; a va lue  p .  = 0.60 was a s s u m e d  in the ca l cu l a t i ons .  

The funct ion S(p) d e s c r i b e s  the i n c r e a s e  in f luid v i s c o s i t y  as the r e s u l t  of d i s t o r t i o n  of the s t e a m -  

l ines  in the p r e s e n c e  of a s y s t e m  of su spended  p a r t i c l e s .  To  be s p e c i f i c  we u s e  the a p p r o x i m a t i o n  

s (9) = (l -- p) -~.5 (15) 

which  p a s s e s  to the f a m i l i a r  E i n s t e i n  l i m i t  S ~ 1 + 2.5 p when p ~ 0. 

The  r a t i o  N D = T2(1 + T2) - I  of the t r a n s v e r s e  and longi tudinal  c o e f f i c i e n t s  fo r  p s e u d o t u r b u l e n t  p a r t i c l e  

d i f fus ion,  c a l c u l a t e d  f r o m  (11) us ing  (14) and (15), is shown by the cont inuous  l ine  in F ig .  2 f o r  p ,  = 0.60. 

The dashed  l ine  shows N D as  a funct ion of p, c o r r e s p o n d i n g  to the " n o n v i s c o u s "  mode l  with s = 0. P s e u d o -  
tu rbu len t  d i f fus ion  of so l id  p a r t i c l e s  is,  c l e a r l y ,  s t r o n g l y  an i so t rop ic ;  longi tudina l  d i f fus ion tu rns  out to be 

103-104 t i m e s  s t r o n g e r  than t r a n s v e r s e  di f fus ion.  In many  app l i ca t i ons  it is s e n s i b l e  to t a lk  about  the 

longi tud ina l  d i f fus ion  of p a r t i c l e s  only. 

The  func t ions  D 1 f r o m  (13) a r e  given in Fig.  3 f o r  s ;~ 0 (continuous c u r v e )  and s = 0 (dashed l ine).  

The quant i ty  D 2 can a l s o  be found e a s i l y  f r o m  the data  of F igs .  2 and 3. The lmees  in the N D and D 1 c u r v e s  

a p p e a r  as the r e s u l t  of the d i scon t inu i ty  in the second  d e r i v a t i v e  of K(p) fo r  p = 0.28. 

A s y s t e m  of gas bubbles  suspended  in a f luid is of p a r t i c u l a r  i n t e r e s t .  N a t u r a l l y  we a s s u m e  that  in 

the p r o c e s s  of p s e u d o t u r b u l e n t  mot ion  the bubbles  do not lose  t h e i r  ind iv idua l i ty ,  i .e . ,  they  do not c o a l e s c e ,  

do not  b r e a k  up, and do not s t i ck  t o g e t h e r  to f o r m  foam.  This  r e q u i r e s ,  in p a r t i c u l a r ,  that  the s u r f a c e  t e n -  

s ion  at the  f l u i d - g a s  bounda ry  should  be qui te  l a r g e  and the bubbles  t h e m s e l v e s  s m a l l .  

In the c a s e  we can take K(p) ~ 1 = const ;  th is  r e s u l t  c o m e s ,  fo r  e x a m p l e ,  f r o m  c a l c u l a t i o n s  of the  hy -  
d r a u l i c  r e s i s t a n c e  of a l a t t i c e  of bubbles  b a s e d  on the m e s h  mode l .  We use  the a p p r o x i m a t i o n  Sip) = (1 - 

p)-~ f o r  Sip), so  that  we have the f a m i l i a r  r e s u l t  of Gut and Mark,  S ~ 1 + p when p ~ 0. Ca l cu l a t i ons  of Y 

f r o m  Eq. (11) g ive  T = 0.8546, ND = 0.4221. P s e u d o t u r b u l e n t  d i f fus ion of bubbles  is c o n s i d e r a b l y  l e s s  a n -  

i s o t r o p i c  than f o r  a s u s p e n s i o n  of so l id  p a r t i c l e s .  Th i s  is so c h i e f l y  b e c a u s e  in a s u s p e n s i o n  of bubbles ,  

t h e r e  is  no f o r c e  a r i s i n g  f r o m  the n o n l i n e a r i t y  of K as  a funct ion of p, and f r o m  f luc tua t ions  of p '  in the 

s y s t e m .  In th is  c a s e  the r a t i o n  D t u r n s  out to be u n i v e r s a l .  It is independent  of p and of the phys i ca l  p a -  
r a m e t e r s  of the p h a s e s  of the e m u l s i o n .  The c o r r e s p o n d i n g  va lue  of N D fo r  a s u s p e n s i o n  of so l id  p a r t i c l e s  
is a l s o  independent  of the phys i ca l  p a r a m e t e r s ,  but is a funct ion  of p. 

The c o e f f i c i e n t  D 1 fo r  gas  bubbles  is g iven  in Fig .  4 as a funct ion  of p fo r  s ~ 0 and s = 0 by the c o n -  
t inuous  and dashed  c u r v e s  r e s p e c t i v e l y .  
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When the complicated nature of the sys tems  under  investigation and the ambiguity of experimental  
data on diffusion in these sys tems  is taken into account (see, for example, [6]), the small quantitative dif-  
ference between models with s ~ 0 and s = 0 can in many cases  be neglected. 

We note that for s = 0 the resul ts  (11) and (12) do not in general agree with the corresponding resul ts  
for the pseudoturbulent diffusion of par t ic les  in a gas obtained in [5] on the basis of a model in which the 
momentum and viscous s t r e s s e s  in the gas were neglected a pr ior i  [5]. This is connected with the fact that 

lira ~,w(o,  k)=# lira Sw, w(0~, k) 
~"~0~ t ~ O  ~ 0 ~  0 ~ 0  

where e denotes the set of pa ramete r s  charac ter iz ing  the effect of momentum and viscous s t r e s ses  in the 
gas. Thus the model in [5], although leading in a se r ies  of cases  to qualitatively cor rec t  resul ts ,  is some-  
what formal in context. 

Experiments for determining effective part icle  diffusion coefficients have been car r ied  out basical ly  
for  pseudoliquefied sys tems .  In view of the divers i ty  of devices and layers  used, and methods for m e a s u r -  
ing or calculating (from the measured  viscosi ty or thermal  diffusivity of the layer) the coefficients of 
longitudinal and t r ansve r se  diffusion, the results  obtained by different authors exhibit fair ly considerable 
d iscrepancies  [6]. There  are ,  moreover ,  in all such sys tems,  circulation currents  of both phases,  caused 
by frict ion in the neighborhood of the walls. The component u n of the relat ive viscosi ty  of the liquid phase 
of this c i rcu la tory  flow, normal  to the direction of the bas ic  flow, is lower than u by roughly an order  of 
magnitude. Exactly the same relat ion is observed for measured  values of the t r ansve r se  and longitudinal 
particle-diffusion coefficients in narrow layers  [6]. Thus in the experiments one is actually dealing not 
with the t r ansve r se  diffusion coefficient in the sense of this paper, but ra ther  with the longitudinal (rela-  
tive to Un) particle-diffusion coefficient. 

At present  one can only talk about experimental ly  verifying the expression for the longitudinal pseu-  
doturbulent particle-diffusion coefficient, which is much less dependent on the presence  of circulation, It is 
not difficult to establish that the values of this coefficient, calculated f rom the resul ts  of this paper,  coin-  
cide in order  of magnitude with the values determined experimental ly  (see review in [7]). 

The conclusion that longitudinal diffusion has a marked predominance over t r ansver se  diffusion also 
agrees  with direct  observations of part icle  pulsations in comparat ively  rar if ied sys tems.  It suffices to say 
that the f i rs t  papers  on this topic were general ly  concerned only with longitudinal pulsations (see, for ex-  
ample, the descript ion of the experiments  of A. K. Bondareva in [6]). However, it should be noted that the 
physical reason why longitudinal diffusion predominates  can be found not only in the velocity anisotropy of 
pseudoturbulent pulsations, but a lso  in the anisotropy of the corresponding mixing lengths. If the mixing 
length in the t r ansve r se  direct ion is of the order  of the mean distance between part icles  in suspension, 
then it can be considerably lower in the longitudinal direction [6]. 
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